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Summary 
 
This section gives an overview of the basic building blocks of linear multivariable 
systems modeling and controller design.  As the name implies, a linear multivariable 
system has several input and output variables. Furthermore, there exists linear 
interactions in the system, i.e. a change in the value of a particular input variable can 
affect the values of several output variables. These interaction effects complicate 
considerably the analysis and especially the design of controllers for multivariable 
systems. 
 
Before any control design can take place a model of the plant in question has to be 
established. In the multivariable case there exist several model types that can be used to 
mathematically describe a dynamical multivariable system. The three most common 
ones are the transfer-function matrix approach, the state-space approach and the 
polynomial matrix approach. Each of these descriptions leads to different types of 
design methods, including pole-allocation, optimal control, decoupling etc. 
 
Robustness of multivariable systems is a key issue in the controller design. This is due 
to the fact that multivariable systems are more sensitive to modeling uncertainty than 
single variable systems. Consequently robust control plays an important part in modern 
multivariable control. 

1. Introduction 

In this section, the basic building blocks of linear multivariable systems modeling and 
controller design are pulled together to provide an overview of the issues, the techniques 
and the role of theory and computation in the design process. The following sections 
will add detail to the story outlined here so details are limited to be sufficient only to 
place an idea in context and, hopefully, give the reader some insight into the motivation, 
possibilities and limitations that are inevitably met both in theory and in practice. The 
treatment is not exhaustive but the reading list should provide some access to details and 
related techniques not discussed here. To place some current ideas in context, a 
historical approach is taken from time to time – firstly to set ideas in context but 
secondly to ensure that the way forward takes the best from the present with the best 
from the past.  

2. Models 

2.1. Dynamical Systems and Laplace Transform 
 
The overall goal of a feedback control is to use the principle of feedback to cause the 
output variable of a dynamic process to follow a given reference variable accurately 
regardless of any external disturbances acting on the plant.  The cornerstone for 
feedback control design is a mathematical model of the dynamical process. These 
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mathematical models typically consist of a set differential equations and algebraic 
equations. In this section the attention is restricted on linear time-invariant differential 
equation of the form (which belongs to the wider class of Ordinary Differential 
Equations or ODEs) 
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where ( ) ( ) ( )i iy u  is the i’th derivative of ( ) ( ( ))y t u t  respect to the time variable t  and 
for causality it is assumed that n m≥ . Furthermore, for the existence of a unique 
solution the initial conditions ( )(0) for 1, -1y i i n= …  have to be specified. 
 
In this equation ( )y t  is the measured output variable, and ( )u t  is the input variable that 
can be freely manipulated and the differential equation describes the relationship 
between these two variables. This class of dynamical models is obtained by either 
analytical modeling of these systems directly from the fundamental and empirical laws 
governing the process or by indirect model-fitting techniques based on available plant 
data. The model is typically referred as a single-input single-output (SISO) system in 
order to differentiate it from the case where the system dynamics requires a set of 
differential equations to describe its behavior and consequently has more than one input 
and output variable. 
 
The analysis and control design using directly the set of differential equations turned out 
to be a very difficult task. Hence integral transformations were introduced that 
transform the set of differential equations into a set of algebraic equations. The most 
commonly used integral transformation is the Laplace transformation defined for a time 
function ( ),  ( ) 0 for 0f t f t t= < , by the equation 
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where s  is a complex variable and the convergence of the integral is guaranteed if ( )f t  
does not grow faster than an exponential rate. The original function ( )f t  can be 
recovered from its Laplace transform with the Inverse Laplace transform 
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where γ  is vertical contour in the complex plane chosen so that all singularities of 

( )f s are to the left of it. Furthermore, it can be shown that the impulse response (i.e. 
( )u t  is chosen to be the Dirac unit impulse function) of the system (1) is given by the 

Inverse Laplace transform of the equation 
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when the initial conditions of the system (1) are zero. ( )G s  is typically termed the 
transfer function of the dynamical system (1). The importance of the transfer function is 
due to the fact that based on the Convolution Theorem, the response of the dynamical 
system for an arbitrary Laplace transformable input signal ( )u t  from zero initial 
conditions is given by 
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Hence for example a series and parallel connections of differential equations can be 
analyzed by using purely algebraic manipulations under the zero initial condition 
assumption. 
 
Another important property of the transfer function is that the response of the system in 
steady state for a sinusoidal signal ( ) sin( )u t tω=  can be calculated by setting s jω=  in 
the transfer function. The result is a complex number ( )G jω , where the absolute value 

( )G jω  determines the resulting amplification and the angle of ( )G jω  is the phase-
change caused by the dynamical system, i.e. the output ( )y t  in steady state for 

( ) sin( )u t tω=  is given by ( ) | ( ) | sin( arg( ( ))y t G j t G jω ω ω= +  where 
arg( ( )) arctan(Im( ( )) / Re( ( )))G j G j G jω ω ω= . This interpretation is extremely 
important for example in the design of analogue filters. Furthermore, in practical 
applications it is relatively common that there exists experimental data of the frequency 
response of the system (or it is at least easy to measure) and this data can be used to 
identify a model of the underlying dynamical system. 
 
2.2. State-space Equations 
 
Another possibility for describing dynamical systems is state-space equations. In this 
method the differential equations a dynamic system are organized as a set of first-order 
differential equations in the vector-valued state of the system, and the solution is 
visualized as a trajectory of this state vector in an n-dimensional state space. The benefit 
of the state-space approach over the ODE approach is that it can be extended easily to 
systems having multiple inputs and outputs (MIMO system) and it allows the 
introduction of geometrical concepts into dynamical systems. For linear time-invariant 
systems the standard form for a state-space representation is given by 
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where ( ) , ( ) , ( )n q rt t t∈ ∈ ∈x u R y\ \ and ( )tx  is the state vector, ( )tu  the manipulated 
input variable and ( )ty  is the measured output variable, where each variable can be 
vector-valued.  and A, B,C D  are matrices of appropriate dimension. The measurement 
equation reflects the fact that in most applications it is impossible to measure directly 
the state ( )tx  (internal variables) but one has to resort to a measurement vector ( )ty  
which is a linear combination of the states. 
 
If the original system is for example an electronic circuit that contains capacitors, 
inductors and resistors, then the states can be chosen to be the voltages in the capacitors 
and currents in the inductors, and consequently the states have a clear physical meaning. 
Furthermore, if the original system is given in the form of a set of time-invariant and 
linear ODEs, an equivalent state-space representation in terms of the input-output 
behavior can be always constructed, but the states do not have necessarily a clear 
physical meaning (see Canonical State Space Representation). 
 
2.3. Transfer-function Matrices 
 
The transfer function approach can be easily extended to cover the multiple-input 
multiple-output (MIMO) case. In this case the dynamical system is described with a set 
of linear time-invariant differential equation (for simplicity it is assumed that number of 
outputs is equal to the number of inputs) 
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 (2.7) 
where ( )ija p  are polynomials in the differential operator : /p d dt=  having real 
coefficients. Taking the Laplace transform of this equation (assuming zero initial 
conditions) and solving for ( )sy  where ( )sy  is now a vector-valued variable of size 

1n×  gives the transfer-function representation of the dynamical system 
 

( ) ( ) ( )s s s=y G u  (2.8) 
 
where ( )sG  is a n n×  transfer function matrix (TFM) where each element is a ratio 

( ) / ( )ij ijb s a s  of two polynomials in s and the off-diagonal elements represent the 
interaction effects between the different “channels” in the system. For the transfer 
function matrix case equivalent results exist as for the transfer function in Section 2.1. 
For the state-space representation (A,B,C,D)  in (2.5) the transfer-function matrix 
becomes (assuming zero initial conditions) 
 

1( ) ( )s s −= − +G C I A B D  (2.9) 
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where the dimension of the TFM is  r q×  and hence a dynamical system can be 
described equivalently in terms of input-output behavior either with the transfer 
function matrix description or the state-space description.  
 
2.4. Polynomial Matrix Models 
 
Polynomial systems theory was motivated by the fact that differential equations can be 
written in the form 
 

( ) ( ) ( ) ( )p t p t=A y B u  (2.10) 
 

where ( )pA  and ( )pB  are polynomial matrices in the differential operator : dp
dt

= . If 

the function space where ( )ty  and ( )tu  (which are vector-valued functions) are from a 
correctly chosen vector space, it can be shown that the resulting algebraic structure for 
the polynomial operators is a ring [ ]p^  where ^  is the field of complex numbers. This 
ring structure is strong enough for both analysis and design of controllers because the 
ring-structure is a Principal Ideal Domain having a division algorithm, and hence for 
example Gaussian elimination can be used to solve for a certain variable in the 
multivariable case. The advantage of this approach is that all the ambiguities with zero-
pole cancellations in the Laplace-transform disappear, and the analysis and design 
algorithms can be implemented with a computer in a straightforward manner.  
Furthermore, stability, controllability and observability results coincide with the theory 
developed for state-space representations, resulting in a more general theory (see 
Controller Design using Polynomial Matrix Description). Both controllability and 
observability are connected to the existence of a solution for a Diophantine equation, 
where the existence of the solution can be tested efficiently with computational 
techniques (either numerically or symbolically). 
 
If the system is supposed to have zero initial conditions, the system model can be 
written either in the left or right matrix fraction description as 
 

-1 -1 -1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )l l r rt p p t p p t p p t p t= = = =y A B u A B u B A u G u  (2.11) 
 
where the elements of ( )pG  are now from the field of fractions ( )pF .This 
representation of the system can be used to derive the class of all stabilizing feedback 
controllers. This parameterization plays an important role in modern robust control 
techniques, 

2H  and H∞
-theory being two examples. Furthermore, the polynomial 

systems approach seems to have a great potential to be one of the most suitable 
frameworks for multi-dimensional systems, where the number of independent axis is 
more than one (see Polynomial and Matrix Fraction Description). 
 
2.5. Differential-delay Models 
 
In some applications it cannot be assumed that the system can be described purely with 
differential equations due time-delays present in the system. The delay element(s) in the 
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system are typically caused by transportation of material or energy over long distances, 
and consequently delay elements are common in flow systems in chemical engineering 
and communication systems. A typical example of a differential-delay system is a 
retarded differential-delay equation 
 

1 2( ) ( ) ( ) ( )
( ) ( )
t t t t
t t

τ= + − +⎧
⎨ =⎩

x A x A x Bu
y Cx
�

 (2.12) 

 
where the derivative of the state is not only a function of the current state ( )tx  but also a 
function of the delayed state ( - )t τx . The analysis and control design for this class of 
dynamical system is more complicated because the state of the system is now infinite-
dimensional (in other words the state of the system is the ( )sx  for [ , ]s t t τ∈ − . 
 
2.6. A parallel Development for Discrete-time Systems 
 
Due the invention of the modern computer the theoretical analysis of sampled-data 
systems started to play an important role in control theory. This stems from the fact that 
digital computers can only process sampled data points (0),  ( ),  (2 ), , ( ),f f h f h f kh ……  
with a sampling time h  from the continuous time function ( )f t . If it can be assumed 
that system input vector ( )tu  is an output of a sample-hold device (zero-order hold), 
then the behavior of a continuous-time state-space equation (2.5) at the sampling 
instances can be modeled with the discrete-time state-space equation (a difference 
equation) 
 

( ) ( ) ( )
( ) ( ) ( )
t h t t
t t t
+ = +⎧

⎨ = +⎩

x Φx Γu
y Cx Du

 (2.13) 

 
for 0, , 2 ,t h h= …  and the matrices in the state-space representation (2.13) are given by 
the formulas 
 

( )

0

,
h

h h te e dt−= = ∫A AΦ Γ B  (2.14) 

 
Furthermore, so called Z-transform plays the similar role for discrete-time linear time-
invariant systems as the Laplace transform for the continuous time case, where for a 
discrete-signal the Z-transform is defined with the equation 
 

{ }
0

( ) ( ) kh

k
Z f th f kh z

∞
−

=

=∑  (2.15) 

 
which is bounded if the signal ( )f kh  does not grow faster than an exponentially 
growing function. From the definition of the Z-transform parallel results can be 
established for the transfer function ( )G z  of a dynamical system (which also the 
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impulse response of the system). The transfer function of the discrete state-space model 
(2.12) is given by 
 

1( ) ( )z z −= − +G C I Φ Γ D  (2.16) 
 
where ( )zG  is an n n×  matrix where each element is a ratio of two polynomials in -1z .  
It is often useful to identify z  with j hz e ω=   to relate the discrete transfer function 
matrix with its continuous counterpart. 
 
The polynomial approach also covers discrete-time case, where the plant model is now 
written in the form  
 

-1 -1( ) ( ) ( ) ( )q t q t=A y B u  (2.17) 
 
where q-1 is the backward-shift operator and -1( )qA  and -1( )qB  are polynomial matrices 
where the elements of the matrices come from the polynomial ring C[q-1]. As with the 
continuous-time case, if the system has zero initial conditions, the system model can be 
written in the matrix fraction description form, and similar parameterization of all 
stabilizing controllers can be found. 
 
2.7. Model Reduction and Approximation 
 
In most analysis methods, the model is assumed to be an exact representation of the 
plant. This is never the case so errors in prediction must be expected. In control systems 
design terms, feedback is capable of suppresses model errors which leaves open the 
possibility that a simplified model may ease the analysis whilst still achieving the 
designer’s objectives. The use of approximate models is hence a valuable option for 
design. There are many ways of obtaining an approximate model from identification 
methods, to simple curve fitting to more sophisticated analysis of the available model. 
In all cases it is normal (but not always the case) that the approximate model has a 
smaller state dimension than the original. The area of model reduction and 
approximation is large. Many applications use physical approximations to obtain a 
simple model. There are, however, methods that are not physically-based spanning the 
simple models underpinning the Ziegler-Nichols tuning method to the sophisticated 
methods of Hankel approximation. They are often used but all must be used with care to 
ensure that modeling errors do not invalidate the predictions of the design exercise. 
Robust control is one way of avoiding problems but this requires that some measure of 
the modeling error is available to the designer. 
- 
- 
- 
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